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Abstract

In this paper we obtain some estimates for the higher order mean curvatures, the scalar curvature
and the Ricci curvature of a complete spacelike hypersurface in a generalized Robertson—Walker
spacetime, under certain assumptions on the warped function of the ambient space. Our results will
be an application of a generalized maximum principle due to Omori.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

In this paper we study spacelike hypersurfaces in the family of cosmological models
known as generalized Robertson—Walker (GRW) spacetimes. GRW spacetimes are warped
products of a (negative definite) universal time as a base and a Riemannian manifold as
a fiber (seeSection 2, and they extend classical Robertson—Walker spacetimes to include
the cases in which the fiber does not have constant sectional curvature (we refer the reader
to[9, Chapter 7}o get an introduction to warped products). GRW spacetimes include, for
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instance, the de Sitter spacetime, the Friedmann cosmological models and the static Einstein
spacetime.

GRW spacetimes are suitable spacetimes to model universes with inhomogeneous space-
like geometry{10]. In fact, it is well-known that conformal changes of the metric of a GRW
spacetime with a conformal factor which only depends, @noduce new GRW spacetimes.

Even more, small deformations of the metric on the fiber of Robertson—Walker spacetimes
also fit into the class of GRW spacetimes. Thus, a GRW spacetime is not necessarily spa-
tially homogeneous, asinthe classical cosmological models. Recall that spatial homogeneity
seems appropriate just as a rough approach to consider the universe in the large, but not to
consider it in a more accurate scale, because this assumption could not be realistic.

In this paper we establish some a priori estimates for the curvatures of complete spacelike
hypersurfaces in a GRW spacetifiewhich are contained in certain unbounded regions of
the ambient space determined by suitable assumptions on the warped fundorOoi
study is motivated by the papgt], where the first author jointly with Ahs established
several estimates for the curvatures of a complete hypersurface in the de Sitter space (see
also[5,7]).

By curvatureshere we mean the higher order mean curvatures of the hypersurface, as
well as its scalar and Ricci curvatures. Let us recall thatjthenean curvatures/;, for
Jj = 1,...,n, are the natural generalization of the mean and scalar curvatures of the
hypersurface, and they are defined, up to a constant, by the elementary symmetric functions
of the principal curvatures. It follows from the Gauss equation of the hypersurfadé tisat
extrinsic whery is odd and its sign depends on the chosen orientation, \ihile intrinsic
whenj is even.

Our results will be an application of the following generalized maximum principle for
Riemannian manifolds given by Omd8] (see also Yau's papét?2]).

A generalized maximum principleet M be a complete Riemannian manifold whose
sectional curvatures are bounded away frem and letu € C%(M) be a function bounded
from above. Then, for each> 0 there exists a point, € M such that

(i) Vu(pe)l <e,
(i) (Vzu)pS(v, v) < ¢, for all tangent vectoo € T, M, |v| = 1,
(i) supu — e < u(p,) < supu,

whereVu andV2u denote, respectively, the gradient and the Hessian of

2. Preliminaries

Let (F, g) be anm-dimensional ¢ > 2) Riemannian manifold and létC R be an open
interval inR endowed with the metrie-ds2. The warped produc = I x ¢ F endowed
with the Lorentzian metric

(,) = mi(=d®) + fPrnmi(e),

where f > 0 is a smooth function o, andxz; andsr denote the projections ontoand
F respectively, is said to begeneralized Robertson—-Walk@RW) spacetime witlbase
(I, —dr?), fiber (F, g) andwarping functionf (see[2]).
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A smooth immersiony : M — M of ann-dimensional connected manifol is said
to be aspacelike hypersurfadéthe induced metric via/ is a Riemannian metric oM,
which, as usual, is also denoted Qy.

Note that the timelike vector fieley = 3/3dr € X (M) determines a time-orientation on
M. Thus, ify : M — M is a spacelike hypersurface, we can put in each poiatM

3 (p) =8 (p) + 3 (p),

WhereatT e X(M) anda,l is a non-vanishing vector field normalté. Then we will takeV
as the vector field which results by normalizidyg, which is a timelike unit normal vector
field onM in the same time-orientation th&t that is, verifying thato,, N) < —1. We will
refer toN as theGauss mapf M.

In order to set up the notation to be used later, we will denoté bypdV the Levi-Civita
connections ofif andM, respectively. Then the Gauss and Weingarten formula/for
M are given respectively by

VxY = VxY — (A(X), Y)N (1)
and
VxN = —A(X) (2)

for all tangent vector fieldX, Y € X(M), whereA stands for the shape operatorMfin
M with respect to the Gauss map(see[9, Chapter 4).

Associated to the shape operatorMfthere aren algebraic invariants, which are the
elementary symmetric functions of its principal curvaturess, ... , k,, given by

ojlkr, ... k)= Y kiy.....kj 1<j<n

i1<-<ij

The jth mean curvaturéd; of the spacelike hypersurface is then defined by

<’;) Hj=(~1/oj(k, ... kp) =0j(—k1, ..., —kp).

Whenj = 1, Hi = —(1/n)tr(A) = H is the mean curvature d#. The choice of the

sign (—1)/ in our definition of H; is motivated by the fact that in that case the mean

curvature vector is given b§f = HN. Therefore H(p) > 0 at a pointp € M if and only

if f](p) is in the time-orientation determined By(p). On the other hand, wheh= n,

H, = (—1)" det(A) defines the Gauss—Kronecker curvature of the spacelike hypersurface.
The spacelike slices(t,) = {t,} x F,t, € I, will play an important role in our work.

As it can be easily seelf(z,) has shape operatdr= (— f/(z,)/f(t,)) I, S0 thatF(z,) is a

totally umbilical hypersurface aff with constantjth mean curvature

o (f/(to))f
TN ) )
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3. Mainresults

The classical maximum principle allows us to obtain the following estimates for the higher
order mean curvatures of a spacelike hypersurfacéd/ — M in a GRW spacetime when
the functioru = 7r; o ¥ is bounded o/ and /' has a suitable sign on the hypersurface. In
what follows, we writef’ (1) > 0 (resp.f’(u) <« 0) to express that there exists a positive
(resp. negative) constaktsuch thatf’(u) > k > 0 (resp.f’'(u) < k < 0).

Theorem 1. LetM = [ x r F be a GRW spacetime and: M — M a complete spacelike
hypersurface whose sectional curvatures are bounded away-frsim
(@) If f'(u) > 0on M and there exist® = inf(u), then
f’(m)j
fly ) -
(b) If f(u) < 0on M and there existg = supu), then
f/(ﬂ))’
1B

whenever j is everand

/ J

inf H; < (f(ﬁ))
‘ f(B)

whenever j is odd

SUpH; > (

susz(

Proof. From the Gauss formulél) it is not difficult to see that the gradient ofis -3,
where

8 =0, 4 (3, NYN € X(M) ()

denotes the tangential componendofOn the other hand, usir{@) and (2) we also obtain
that the Hessian af is given by

f'(u)
Sw)
for all tangent vector fiel, Y € X(M).

Vu(X,Y) = — (X, Y) + (X, 0] )Y, 87 )) + (N, 3,)(AX, Y) )

() Sinceu is a smooth function o/ bounded from below by = inf(u), we know
from the generalized maximum principle that for eagh= 1/m there exists a point
pm € M such that

Vu(pu)l < ems (VZu)p, (0. 0) > —&m (5)
for all tangent vectov € T, M, |v| = 1, and

a+ ey > u(pm) > a.
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Let{e/"};—1,....,» be anorthonormal basis of principal directions at the ppjnsatisfying
Ay, (") = ki(pn)e". We obtain from(5) and (4)that

S @(pm))
Fu(pm))

1
+ (N(pm)s 0: (Pm))Yki(pm) > _Z

(V2u)p,, (€, € LT (L (e 8 (p))D)

and, sinceN(pn), 9;(pm)) < 0, it follows that

1 ( 4 S kpm)) f/(M(Pm))

ki(pm) < (L+ (e aT(pm»Z)) : (6)

(N(pm), 0:(pm)) Su(pm))

Sincef’(u) > 0onM, k; (p,,) must be negative for sufficiently large. Let us assume
from now on thain is large enough so that(p,,) < 0. Note that, fron(3), we get

~1=(3],8]) = |Vul® - (3, N)?

so that

—~(30pm). N(pm)) = 1+ Vu(pu)?2 < /142,

Then we have

1 £/ w(pn)) !
n n - m moaT 2
. ) Hi(pm . o 1 ,0; (Pm
(1) pn) = ( ) (sz (G gy 4 - o )>>
and lettingm — oo it follows that
f’(a))f
fly )
From a similar argument, for eael = 1/m there exists a point,, € M such that

supH-z(

IVu(gm)| < em, (Vzu)qm(v, V) < &n
for all tangent vectov € T, M, [v| = 1, and
B—em <ulgm) < B.
An analogous reasoning allows us to obtain

1 < I u(gm))
(N(gm), 0:(qm)) Sfulgm))

beingk;(¢,,) positive form sufficiently large. Hence we have:

ki(qm) > LT (L (e aT<qm)>2)> ,

e If jis even, lettingn — oo it follows that

f/(ﬁ))j
B )

SUpH; > (
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e If jisodd, lettingn — oo it results

/ J
ianjg(f(’B)> . O
1B
Remark 2. Note that, in each case, the bound for the curvailirej = 1, 2, ... , n, is the

curvatureh ; of the slice which determines the region where the hypersurface is contained.

We can obtain similar estimates for the curvatures of a spacelike hypersurface such that
the functionu acquires a local maximum or minimum @ and £’ has a suitable sign at
such points:

Theorem 3. Lety : M — M be a spacelike hypersurface in a GRW spacetihe=

I x¢F.

(a) If u attains a local minimum at a point; € M and f/(u(p1)) > 0, then
f’(u(m)))f

fu(p) )

(b) If u attains a local maximum at a poipb € M and f'(u(p2)) < 0,then
f/(u(Pz)))j

fu(p2)) )

whenever j is everand

f’(u(pz»)"
fu(p2) ) -

whenever j is odd

SUpH; > (
SUpH,; > <

ian,-g(

Proof. Sinceu attains a local minimum ap; we have thaVu(py) = —atT = 0 and
(Vzu),,1 is positive semidefinite. A similar argument asTiheorem lallows us to obtain
the result.

The proof of (b) is analogous. O

From now on, we will study the case of a spacelike hypersufagea GRW spacetime
M with constant sectional curvatute As is well known (se€3]), under this assumption
the fiber F has constant sectional curvature, thatiss a classical Robertson—Walker
spacetime. Under this additional hypothesis, the Ricci curvatuié isfgiven by

Ric(X, Y) = c(n — (X, Y) — tr(A)(A(X), ¥) + (A(X), A(Y)) )

for X, Y € X(M), and the second higher order mean curvaftigas, up to a constant, the
scalar curvaturg of M; indeed

S=nn-—21(c— H).
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The spacelike slices(z,) of such spacetimes have constant Ricci curvature

o (1))
“C_(n_l)<c_(f(tg)> )(,)

and constant scalar curvature

] f’(to)>2
s=nn—21)|c— < .
( fty)
Itis possible to give the following estimates for the Ricci and scalar curvatures of complete

spacelike hypersurfaces in GRW spacetimes of constant sectional curvature. In what follows,
we will denote byUM = {(p,v) : p € M, v € T, M, |v| = 1} the unit sphere bundle af.

Theorem 4. LetM = I x s F be a GRW spacetime of constant sectional curvatzed
¥ M — M acomplete spacelike hypersurface whose sectional curvatures are bounded
away from—oo.

(@) If f(u) > 0on M and there exist® = inf (), then

. . . (@Y
(p’Lr;erM Ric,(v,v) < (n —1) (c — ( @ ) )

y 2
infS<ntn—1)(c— (f(a)> .
fl@)
(b) If /() < 0on M and there exist§ = supu), then

_ . (B
(p’Lr;erM Ric,(v,v) < (n —1) (c — ( 0 ) )

/ 2
infS<nn-1) E—(f(ﬁ)> )
f(B)

Proof. Under the assumptions of (a), we obtain fréry and (6)that

and

and

Ric(e”, ") =c(n — 1) = Y ki(pm)k;j(pm) + k5 (pm)
i=1
=2(n—1 =Y ki(pn)kj(pm) <cn—1) — (n — 1)
i#]

! 1 L@ ) m T 2>>2
\ oo LD (34 e o] (o
<<N(pm),a,<pm)> (m oy LT % ()
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and lettingm — oo we get that

. . (@)
(p’:)r)EUM Ric,(v,v) < (n —1) (c - ( @ ) ) .

Bearing in mind thats = tr(Ric), it follows the result on the scalar curvature.
The case (b) is analogous. O

Remark 5. Again, the bounds for the Ricci and scalar curvatures of the hypersutace
are, respectively, the curvatures ric araf the slice which determines the region whéfe
is contained.

We also have the following theorem.

Theorem6. Lety : M — M be aspacelike hypersurface ina GRW spacefime /x s F
of constant sectional curvature

(a) If u attains a local minimum at a poingt; € M and f/(u(p1)) > 0, then

. . _(fup)))
f R -1 - ——
(i P (0 0) = (1 )G (wmm))

v 2
inf S < n(n— 1) a—<M> .
Sflu(pr)

(b) If u attains a local maximum at a poipk € M and f'(u(p2)) < 0,then

/ 2
inf  Ric,(v,v) < (1 — 1) (a - (_f (”(1’2))> )

and

(p,v)EUM Su(p2))

and

v 2
inf S < n(n— 1) 5—<M> .
Sfu(p2))

4. Conclusions and final comments

Spacelike hypersurfaces in a spacetime play an important role in General Relativity. As
is known, they can be used as initial surfaces to solve the Cauchy problem in spacetimes.
Specifically, on those hypersurfaces which have constant mean curvature, the constraint
equations split into a linear system and a non-linear elliptic equatio4kder instance).

Onthe other hand, three-dimensional relative spatial universes of certain observers in space-
times may be modeled from spacelike hypersurfaces. Recall also that several Singularity
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Theorems assumed the existence of a spacelike hypersurface, with some physically rea-
sonable assumptions on its second fundamental férr@hapter 14]Indeed, the second
fundamental form contains all the information to predict the time evolution in future and in
past of spatial universes.

In a GRW spacetimé/, the integral curves o, are calledcomoving observershis
family of natural observers is clearly distinguished among other ones. The timelike vector
field f3, represents an a priori symmetry of the GRW spacetimand is conformal. This
gives divd;) = (n — 1) f'/f, where div is the divergence with respect to the Lorentz metric
of M. Thus, if f/ > 0 holds, then diw,) > 0, which indicates that the comoving observers
are, on average, spreading apart. Similafly< 0 says that the comoving observers come
together[11, p. 121] Relative spatial universes of comoving observers are the spacelike
slicest = constant. On the other hand, the unit normal vector fiélén a spacelike
hypersurfacé/ extends locally to a reference frarégits integral curve througlp € M is
the geodesie — expy,, (SN,) of M). We have proposed in this paper to relate observable
quantities onM for the observers ir¥ and the corresponding ones on certain spacelike
slices for the observers .

Essentially, we have used two natural assumptions: the first one about the warping func-
tion, restricted on the spacelike hypersurfa¢ewhich may be interpreted as an expan-
sion/contraction of the spacetime for comoving observers. The second assumption is a
regularity behavior about the curvatureMf which is automatically satisfied ¥ is com-
pact, and hence complete, in a (necessarily[2@spatially closed spacetimé. We have
obtained several inequalities relating tfth mean curvature (resp. Ricci curvature)isf
and thejth mean curvature (resp. Ricci curvature) of suitable spacelike slices of the GRW
spacetimel/.

In order to emphasize the physical application of our results, note that, under our assump-
tions, Theorem Ireads

(a) If comoving observers o/ are, on average, spreading apartdnthen everyjth
mean curvaturéd; of M satisfies

SUpPH; > h j(a),

whereq is the infimun value of the restriction # of the universal time, andh
is the jth mean curvature of the spacelike slice o.
(b) If comoving observers a¥ are, on average, coming togetherMnthen

SUpH; > hj(B) (respinf H; < h;(B)),

whereg is the supremun value of the restrictionibof the universal time, and
is the jth mean curvature of the spacelike slice g and; is even (respj is odd).

On the other hand, i/ is indeed assumed a classical Robertson—Walker spacetime,
Theorem 4says

If comoving observers aif are, on average, spreading apart (resp. coming together) on
M, then the Ricci curvature Ric dff satisfies
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inf Ric <ric, (respinfRic <ricg),

wherea and g are as previously, Ric is considered as a function on the unitary tangent
bundle ofM and rig, (resp. rig) is the (constant) Ricci curvature of the spacelike slice
t =« (resp.r = B).

It is normally argued that the curvature of a realistic spacetime must satisfy a suitable
energy conditiorwhich expresses the presence of matter and/or electromagnetic radiation
in spacetime. Note that the GRW spacetimedlireorems 4 and 6bey thenull energy
condition(which only says presence of radiation) because both cases assume constant sec-
tional curvature. The most used energy condition is the so ctilieelike convergence
condition(TCC) which saysRic(v, v) > 0, for all timelike tangent vectar (sometimes,
it is said that TCC is the mathematical translation that gravity, on average, attracts). For
instance, if2,6], spacelike hypersurfaces of constant mean curvature in GRW spacetimes
obeying TCC (and the stronger energy conditRic(v, v) > 0, for all timelike tangent
vectorv) have been studied, from different approaches. So, it naturally appears to carry
out our study onjth mean curvatures to spacelike hypersurfaces in GRW spacetimes sat-
isfying TCC. On the other hand, it would be of interest to consider analogous problems
on conformally stationary (CS) spacetimes (i.e. spacetimes which admits a timelike con-
formal vector field¢). This family contains properly the one of GRW spacetimes. Spe-
cially those CS spacetimes such tl§as not irrotational deserves to be contemplated to
that end.
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