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Abstract

In this paper we obtain some estimates for the higher order mean curvatures, the scalar curvature
and the Ricci curvature of a complete spacelike hypersurface in a generalized Robertson–Walker
spacetime, under certain assumptions on the warped function of the ambient space. Our results will
be an application of a generalized maximum principle due to Omori.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

In this paper we study spacelike hypersurfaces in the family of cosmological models
known as generalized Robertson–Walker (GRW) spacetimes. GRW spacetimes are warped
products of a (negative definite) universal time as a base and a Riemannian manifold as
a fiber (seeSection 2), and they extend classical Robertson–Walker spacetimes to include
the cases in which the fiber does not have constant sectional curvature (we refer the reader
to [9, Chapter 7]to get an introduction to warped products). GRW spacetimes include, for
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instance, the de Sitter spacetime, the Friedmann cosmological models and the static Einstein
spacetime.

GRW spacetimes are suitable spacetimes to model universes with inhomogeneous space-
like geometry[10]. In fact, it is well-known that conformal changes of the metric of a GRW
spacetime with a conformal factor which only depends ont, produce new GRW spacetimes.
Even more, small deformations of the metric on the fiber of Robertson–Walker spacetimes
also fit into the class of GRW spacetimes. Thus, a GRW spacetime is not necessarily spa-
tially homogeneous, as in the classical cosmological models. Recall that spatial homogeneity
seems appropriate just as a rough approach to consider the universe in the large, but not to
consider it in a more accurate scale, because this assumption could not be realistic.

In this paper we establish some a priori estimates for the curvatures of complete spacelike
hypersurfaces in a GRW spacetimeM̄ which are contained in certain unbounded regions of
the ambient space determined by suitable assumptions on the warped function ofM̄. Our
study is motivated by the paper[1], where the first author jointly with Alı́as established
several estimates for the curvatures of a complete hypersurface in the de Sitter space (see
also[5,7]).

By curvatureshere we mean the higher order mean curvatures of the hypersurface, as
well as its scalar and Ricci curvatures. Let us recall that thejth mean curvaturesHj, for
j = 1, . . . , n, are the natural generalization of the mean and scalar curvatures of the
hypersurface, and they are defined, up to a constant, by the elementary symmetric functions
of the principal curvatures. It follows from the Gauss equation of the hypersurface thatHj is
extrinsic whenj is odd and its sign depends on the chosen orientation, whileHj is intrinsic
whenj is even.

Our results will be an application of the following generalized maximum principle for
Riemannian manifolds given by Omori[8] (see also Yau’s paper[12]).

A generalized maximum principle: Let M be a complete Riemannian manifold whose
sectional curvatures are bounded away from−∞ and letu ∈ C2(M) be a function bounded
from above. Then, for eachε > 0 there exists a pointpε ∈ M such that

(i) |∇u(pε)| < ε,
(ii) (∇2u)pε(v, v) < ε, for all tangent vectorv ∈ TpM, |v| = 1,

(iii) supu − ε < u(pε) ≤ supu,

where∇u and∇2u denote, respectively, the gradient and the Hessian ofu.

2. Preliminaries

Let (F, g) be ann-dimensional (n ≥ 2) Riemannian manifold and letI ⊂ R be an open
interval inR endowed with the metric−dt2. The warped product̄M = I ×f F endowed
with the Lorentzian metric

〈, 〉 = π∗
I (−dt2) + f 2(πI)π

∗
F (g),

wheref > 0 is a smooth function onI, andπI andπF denote the projections ontoI and
F respectively, is said to be ageneralized Robertson–Walker(GRW) spacetime withbase
(I,−dt2), fiber (F, g) andwarping functionf (see[2]).



J. A. Aledo et al. / Journal of Geometry and Physics 52 (2004) 469–479 471

A smooth immersionψ : M → M̄ of ann-dimensional connected manifoldM is said
to be aspacelike hypersurfaceif the induced metric viaψ is a Riemannian metric onM,
which, as usual, is also denoted by〈, 〉.

Note that the timelike vector field∂t = ∂/∂t ∈ X(M̄) determines a time-orientation on
M̄. Thus, ifψ : M → M̄ is a spacelike hypersurface, we can put in each pointp ∈ M

∂t(p) = ∂�
t (p) + ∂⊥

t (p),

where∂�
t ∈ X(M) and∂⊥

t is a non-vanishing vector field normal toM. Then we will takeN
as the vector field which results by normalizing∂⊥

t , which is a timelike unit normal vector
field onM in the same time-orientation that∂t , that is, verifying that〈∂t, N〉 ≤ −1. We will
refer toN as theGauss mapof M.

In order to set up the notation to be used later, we will denote by∇̄ and∇ the Levi-Civita
connections ofM̄ andM, respectively. Then the Gauss and Weingarten formulas forM in
M̄ are given respectively by

∇̄XY = ∇XY − 〈A(X), Y〉N (1)

and

∇̄XN = −A(X) (2)

for all tangent vector fieldsX, Y ∈ X(M), whereA stands for the shape operator ofM in
M̄ with respect to the Gauss mapN (see[9, Chapter 4]).

Associated to the shape operator ofM there aren algebraic invariants, which are the
elementary symmetric functionsσr of its principal curvaturesk1, . . . , kn, given by

σj(k1, . . . , kn) =
∑

i1<···<ij

ki1, . . . , kij , 1 ≤ j ≤ n.

Thejth mean curvatureHj of the spacelike hypersurface is then defined by

(
n

j

)
Hj = (−1)jσj(k1, . . . , kn) = σj(−k1, . . . ,−kn).

Whenj = 1, H1 = −(1/n) tr(A) = H is the mean curvature ofM. The choice of the
sign (−1)j in our definition ofHj is motivated by the fact that in that case the mean
curvature vector is given by�H = HN. Therefore,H(p) > 0 at a pointp ∈ M if and only
if �H(p) is in the time-orientation determined byN(p). On the other hand, whenj = n,
Hn = (−1)n det(A) defines the Gauss–Kronecker curvature of the spacelike hypersurface.

The spacelike slicesF(to) = {to} × F , to ∈ I, will play an important role in our work.
As it can be easily seen,F(to) has shape operatorA = (−f ′(to)/f(to))In, so thatF(to) is a
totally umbilical hypersurface of̄M with constantjth mean curvature

hj =
(
f ′(to)
f(to)

)j

.
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3. Main results

The classical maximum principle allows us to obtain the following estimates for the higher
order mean curvatures of a spacelike hypersurfaceψ : M → M̄ in a GRW spacetime when
the functionu = πI ◦ψ is bounded onM andf ′ has a suitable sign on the hypersurface. In
what follows, we writef ′(u) � 0 (resp.f ′(u) � 0) to express that there exists a positive
(resp. negative) constantk such thatf ′(u) ≥ k > 0 (resp.f ′(u) ≤ k < 0).

Theorem 1. LetM̄ = I ×f F be a GRW spacetime andψ : M → M̄ a complete spacelike
hypersurface whose sectional curvatures are bounded away from−∞.

(a) If f ′(u) � 0 on M and there existsα = inf (u), then

supHj ≥
(
f ′(α)
f(α)

)j

.

(b) If f ′(u) � 0 on M and there existsβ = sup(u), then

supHj ≥
(
f ′(β)
f(β)

)j

whenever j is even, and

inf Hj ≤
(
f ′(β)
f(β)

)j

whenever j is odd.

Proof. From the Gauss formula(1) it is not difficult to see that the gradient ofu is −∂�
t ,

where

∂�
t = ∂t + 〈∂t, N〉N ∈ X(M) (3)

denotes the tangential component of∂t . On the other hand, using(1) and (2), we also obtain
that the Hessian ofu is given by

∇2u(X, Y) = −f ′(u)
f(u)

(〈X, Y〉 + 〈X, ∂�
t 〉〈Y, ∂�

t 〉) + 〈N, ∂t〉〈AX, Y〉 (4)

for all tangent vector fieldX, Y ∈ X(M).

(a) Sinceu is a smooth function onM bounded from below byα = inf (u), we know
from the generalized maximum principle that for eachεm = 1/m there exists a point
pm ∈ M such that

|∇u(pm)| < εm, (∇2u)pm(v, v) > −εm (5)

for all tangent vectorv ∈ TpmM, |v| = 1, and

α + εm > u(pm) ≥ α.
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Let{emi }i=1,... ,n be an orthonormal basis of principal directions at the pointpm satisfying
Apm(e

m
i ) = ki(pm)e

m
i . We obtain from(5) and (4)that

(∇2u)pm(e
m
i , e

m
i ) = −f ′(u(pm))

f(u(pm))
(1 + 〈emi , ∂�

t (pm)〉2)

+ 〈N(pm), ∂t(pm)〉ki(pm) > − 1

m

and, since〈N(pm), ∂t(pm)〉 < 0, it follows that

ki(pm) <
1

〈N(pm), ∂t(pm)〉
(−1

m
+ f ′(u(pm))

f(u(pm))
(1 + 〈emi , ∂�

t (pm)〉2)

)
. (6)

Sincef ′(u) � 0 onM, ki(pm) must be negative form sufficiently large. Let us assume
from now on thatm is large enough so thatki(pm) < 0. Note that, from(3), we get

−1 = 〈∂�
t , ∂

�
t 〉 = |∇u|2 − 〈∂t, N〉2

so that

−〈∂t(pm),N(pm)〉 =
√

1 + ∇u(pm)2 <

√
1 + ε2

m.

Then we have(
n

j

)
Hj(pm) >

(
n

j

)( −1√
1 + ε2

m

(−1

m
+ f ′(u(pm))

f(u(pm))
(1 + 〈emi , ∂�

t (pm)〉2)

))j

and lettingm → ∞ it follows that

supHj ≥
(
f ′(α)
f(α)

)j

.

(b) From a similar argument, for eachεm = 1/m there exists a pointqm ∈ M such that

|∇u(qm)| < εm, (∇2u)qm(v, v) < εm

for all tangent vectorv ∈ TqmM, |v| = 1, and

β − εm < u(qm) ≤ β.

An analogous reasoning allows us to obtain

ki(qm) >
1

〈N(qm), ∂t(qm)〉
(

1

m
+ f ′(u(qm))

f(u(qm))
(1 + 〈emi , ∂�

t (qm)〉2)

)
,

beingki(qm) positive form sufficiently large. Hence we have:

• If j is even, lettingm → ∞ it follows that

supHj ≥
(
f ′(β)
f(β)

)j

.
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• If j is odd, lettingm → ∞ it results

inf Hj ≤
(
f ′(β)
f(β)

)j

. �

Remark 2. Note that, in each case, the bound for the curvatureHj, j = 1,2, . . . , n, is the
curvaturehj of the slice which determines the region where the hypersurface is contained.

We can obtain similar estimates for the curvatures of a spacelike hypersurface such that
the functionu acquires a local maximum or minimum onM andf ′ has a suitable sign at
such points:

Theorem 3. Let ψ : M → M̄ be a spacelike hypersurface in a GRW spacetimeM̄ =
I ×f F .

(a) If u attains a local minimum at a pointp1 ∈ M andf ′(u(p1)) ≥ 0, then

supHj ≥
(
f ′(u(p1))

f(u(p1))

)j

.

(b) If u attains a local maximum at a pointp2 ∈ M andf ′(u(p2)) ≤ 0, then

supHj ≥
(
f ′(u(p2))

f(u(p2))

)j

,

whenever j is even, and

inf Hj ≤
(
f ′(u(p2))

f(u(p2))

)j

,

whenever j is odd.

Proof. Sinceu attains a local minimum atp1 we have that∇u(p1) = −∂�
t = 0 and

(∇2u)p1 is positive semidefinite. A similar argument as inTheorem 1allows us to obtain
the result.

The proof of (b) is analogous. �

From now on, we will study the case of a spacelike hypersurfaceM in a GRW spacetime
M̄ with constant sectional curvaturec̄. As is well known (see[3]), under this assumption
the fiberF has constant sectional curvature, that is,M̄ is a classical Robertson–Walker
spacetime. Under this additional hypothesis, the Ricci curvature ofM is given by

Ric(X, Y) = c̄(n − 1)〈X, Y〉 − tr(A)〈A(X), Y〉 + 〈A(X),A(Y)〉 (7)

for X, Y ∈ X(M), and the second higher order mean curvatureH2 is, up to a constant, the
scalar curvatureS of M; indeed

S = n(n − 1)(c̄ − H2).
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The spacelike slicesF(to) of such spacetimes have constant Ricci curvature

ric = (n − 1)

(
c̄ −

(
f ′(to)
f(to)

)2
)

〈, 〉

and constant scalar curvature

s = n(n − 1)

(
c̄ −

(
f ′(to)
f(to)

)2
)
.

It is possible to give the following estimates for the Ricci and scalar curvatures of complete
spacelike hypersurfaces in GRW spacetimes of constant sectional curvature. In what follows,
we will denote byUM = {(p, v) : p ∈ M, v ∈ TpM, |v| = 1} the unit sphere bundle ofM.

Theorem 4. Let M̄ = I ×f F be a GRW spacetime of constant sectional curvaturec̄ and
ψ : M → M̄ a complete spacelike hypersurface whose sectional curvatures are bounded
away from−∞.

(a) If f ′(u) � 0 on M and there existsα = inf (u), then

inf
(p,v)∈UM

Ricp(v, v) ≤ (n − 1)

(
c̄ −

(
f ′(α)
f(α)

)2
)

and

inf S ≤ n(n − 1)

(
c̄ −

(
f ′(α)
f(α)

)2
)
.

(b) If f ′(u) � 0 on M and there existsβ = sup(u), then

inf
(p,v)∈UM

Ricp(v, v) ≤ (n − 1)

(
c̄ −

(
f ′(β)
f(β)

)2
)

and

inf S ≤ n(n − 1)

(
c̄ −

(
f ′(β)
f(β)

)2
)
.

Proof. Under the assumptions of (a), we obtain from(7) and (6)that

Ric(emj , e
m
j ) = c̄(n − 1) −

n∑
i=1

ki(pm)kj(pm) + k2
j (pm)

= c̄(n − 1) −
∑
i�=j

ki(pm)kj(pm) ≤ c̄(n − 1) − (n − 1)

·
(

1

〈N(pm), ∂t(pm)〉
(−1

m
+ f ′(u(pm))

f(u(pm))
(1 + 〈emi , ∂�

t (pm)〉2)

))2
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and lettingm → ∞ we get that

inf
(p,v)∈UM

Ricp(v, v) ≤ (n − 1)

(
c̄ −

(
f ′(α)
f(α)

)2
)
.

Bearing in mind thatS = tr(Ric), it follows the result on the scalar curvature.
The case (b) is analogous. �

Remark 5. Again, the bounds for the Ricci and scalar curvatures of the hypersurfaceM

are, respectively, the curvatures ric ands of the slice which determines the region whereM

is contained.

We also have the following theorem.

Theorem 6. Letψ : M → M̄ be a spacelike hypersurface in a GRW spacetimeM̄ = I×f F

of constant sectional curvaturēc.

(a) If u attains a local minimum at a pointp1 ∈ M andf ′(u(p1)) ≥ 0, then

inf
(p,v)∈UM

Ricp(v, v) ≤ (n − 1)

(
c̄ −

(
f ′(u(p1))

f(u(p1))

)2
)

and

inf S ≤ n(n − 1)

(
c̄ −

(
f ′(u(p1))

f(u(p1))

)2
)
.

(b) If u attains a local maximum at a pointp2 ∈ M andf ′(u(p2)) ≤ 0, then

inf
(p,v)∈UM

Ricp(v, v) ≤ (n − 1)

(
c̄ −

(
f ′(u(p2))

f(u(p2))

)2
)

and

inf S ≤ n(n − 1)

(
c̄ −

(
f ′(u(p2))

f(u(p2))

)2
)
.

4. Conclusions and final comments

Spacelike hypersurfaces in a spacetime play an important role in General Relativity. As
is known, they can be used as initial surfaces to solve the Cauchy problem in spacetimes.
Specifically, on those hypersurfaces which have constant mean curvature, the constraint
equations split into a linear system and a non-linear elliptic equation (see[4], for instance).
On the other hand, three-dimensional relative spatial universes of certain observers in space-
times may be modeled from spacelike hypersurfaces. Recall also that several Singularity



J. A. Aledo et al. / Journal of Geometry and Physics 52 (2004) 469–479 477

Theorems assumed the existence of a spacelike hypersurface, with some physically rea-
sonable assumptions on its second fundamental form[9, Chapter 14]. Indeed, the second
fundamental form contains all the information to predict the time evolution in future and in
past of spatial universes.

In a GRW spacetimēM, the integral curves of∂t are calledcomoving observers. This
family of natural observers is clearly distinguished among other ones. The timelike vector
field f∂t represents an a priori symmetry of the GRW spacetimeM̄ and is conformal. This
gives div(∂t) = (n−1)f ′/f , where div is the divergence with respect to the Lorentz metric
of M̄. Thus, iff ′ > 0 holds, then div(∂t) > 0, which indicates that the comoving observers
are, on average, spreading apart. Similarly,f ′ < 0 says that the comoving observers come
together[11, p. 121]. Relative spatial universes of comoving observers are the spacelike
slices t = constant. On the other hand, the unit normal vector fieldN on a spacelike
hypersurfaceM extends locally to a reference frameZ (its integral curve throughp ∈ M is
the geodesics �→ expψ(p)(sNp) of M̄). We have proposed in this paper to relate observable
quantities onM for the observers inZ and the corresponding ones on certain spacelike
slices for the observers in∂t .

Essentially, we have used two natural assumptions: the first one about the warping func-
tion, restricted on the spacelike hypersurfaceM, which may be interpreted as an expan-
sion/contraction of the spacetime for comoving observers. The second assumption is a
regularity behavior about the curvature ofM, which is automatically satisfied ifM is com-
pact, and hence complete, in a (necessarily, see[2]) spatially closed spacetimēM. We have
obtained several inequalities relating thejth mean curvature (resp. Ricci curvature) ofM

and thejth mean curvature (resp. Ricci curvature) of suitable spacelike slices of the GRW
spacetimeM̄.

In order to emphasize the physical application of our results, note that, under our assump-
tions,Theorem 1reads

(a) If comoving observers of̄M are, on average, spreading apart onM, then everyjth
mean curvatureHj of M satisfies

supHj ≥ hj(α),

whereα is the infimun value of the restriction toM of the universal timet, andhj

is thejth mean curvature of the spacelike slicet = α.
(b) If comoving observers of̄M are, on average, coming together onM, then

supHj ≥ hj(β) (resp. inf Hj ≤ hj(β)),

whereβ is the supremun value of the restriction toM of the universal timet, andhj

is thejth mean curvature of the spacelike slicet = β andj is even (resp.j is odd).

On the other hand, ifM̄ is indeed assumed a classical Robertson–Walker spacetime,
Theorem 4says

If comoving observers of̄M are, on average, spreading apart (resp. coming together) on
M, then the Ricci curvature Ric ofM satisfies
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inf Ric ≤ ricα (resp. inf Ric ≤ ricβ),

whereα andβ are as previously, Ric is considered as a function on the unitary tangent
bundle ofM and ricα (resp. ricβ) is the (constant) Ricci curvature of the spacelike slice
t = α (resp.t = β).

It is normally argued that the curvature of a realistic spacetime must satisfy a suitable
energy conditionwhich expresses the presence of matter and/or electromagnetic radiation
in spacetime. Note that the GRW spacetimes inTheorems 4 and 6obey thenull energy
condition(which only says presence of radiation) because both cases assume constant sec-
tional curvature. The most used energy condition is the so calledtimelike convergence
condition(TCC) which saysRic(v, v) ≥ 0, for all timelike tangent vectorv (sometimes,
it is said that TCC is the mathematical translation that gravity, on average, attracts). For
instance, in[2,6], spacelike hypersurfaces of constant mean curvature in GRW spacetimes
obeying TCC (and the stronger energy conditionRic(v, v) > 0, for all timelike tangent
vectorv) have been studied, from different approaches. So, it naturally appears to carry
out our study onjth mean curvatures to spacelike hypersurfaces in GRW spacetimes sat-
isfying TCC. On the other hand, it would be of interest to consider analogous problems
on conformally stationary (CS) spacetimes (i.e. spacetimes which admits a timelike con-
formal vector fieldξ). This family contains properly the one of GRW spacetimes. Spe-
cially those CS spacetimes such thatξ is not irrotational deserves to be contemplated to
that end.
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